
165

Chapter 7

Intelligent Unit Movement

In the previous chapter, we built a framework for animating and drawing entities within our game and then added
different types of buildings, vehicles, aircraft, and terrain to it. Finally, we added the ability to select these entities.

In this chapter, we will add a framework to give selected units commands and to get the entities to follow orders.
We will then implement the most basic of these orders: unit movement by using a combination of pathfinding and
steering algorithms to move our units intelligently.

Now let’s get started. We will use the code from Chapter 6 as a starting point.

Commanding Units
We will command units using a convention that has now become standard within most modern RTS games. We will
select units using left-clicks and command them by using right-clicks.

Right-clicking a navigable spot on the map will command selected units to move to the spot. Right-clicking an
enemy unit or building will command all selected units that can attack to attack the enemy. Right-clicking a friendly
unit will tell all selected units to follow it around and protect it. And finally, right-clicking an oil field with a harvester
vehicle selected will tell the harvester to move to the oil field and deploy on it.

The first thing we need to do is modify the mouse object’s click() method inside mouse.js to handle right-click
events, as shown in Listing 7-1.

Listing 7-1.  Modifying click() to Handle Commands on Right-Click (mouse.js)

click:function(ev,rightClick){
 // Player clicked inside the canvas
 
 var clickedItem = this.itemUnderMouse();
 var shiftPressed = ev.shiftKey;
 
 if (!rightClick){ // Player left clicked
 if (clickedItem){
 // Pressing shift adds to existing selection. If shift is not pressed, clear
existing selection
 if(!shiftPressed){
 game.clearSelection();
 }
 game.selectItem(clickedItem,shiftPressed);
 }
 } else { // Player right-clicked
 // Handle actions like attacking and movement of selected units
 var uids = [];

2

Chapter 7 ■ Intelligent Unit Movement

166

 if (clickedItem){ // Player right-clicked on something
 if (clickedItem.type != "terrain"){
 if (clickedItem.team != game.team){ // Player right-clicked on an enemy item
 // Identify selected items from players team that can attack
 for (var i = game.selectedItems.length - 1; i >= 0; i--){
 var item = game.selectedItems[i];
 if(item.team == game.team && item.canAttack){
 uids.push(item.uid);
 }
 };
 // then command them to attack the clicked item
 if (uids.length>0){
 game.sendCommand(uids,{type:"attack",toUid:clickedItem.uid});
 }
 } else { // Player right-clicked on a friendly item
 //identify selected items from players team that can move
 for (var i = game.selectedItems.length - 1; i >= 0; i--){
 var item = game.selectedItems[i];
 if(item.team == game.team && (item.type == "vehicles" ||
item.type == "aircraft")){
 uids.push(item.uid);
 }
 };
 // then command them to guard the clicked item
 if (uids.length>0){
 game.sendCommand(uids,{type:"guard", toUid:clickedItem.uid});
 }
 }
 } else if (clickedItem.name == "oilfield"){ // Player right licked on an oilfield
 // identify the first selected harvester from players team (since only one can
deploy at a time)
 for (var i = game.selectedItems.length - 1; i >= 0; i--){
 var item = game.selectedItems[i];
 if(item.team == game.team && (item.type == "vehicles" && item.name ==
"harvester")){
 uids.push(item.uid);
 break;
 }
 };
 // then command it to deploy on the oilfield
 if (uids.length>0){
 game.sendCommand(uids,{type:"deploy",toUid:clickedItem.uid});
 }
 }
 } else { // Player clicked on the ground
 //identify selected items from players team that can move
 for (var i = game.selectedItems.length - 1; i >= 0; i--){
 var item = game.selectedItems[i];
 if(item.team == game.team && (item.type == "vehicles" || item.type == "aircraft")){
 uids.push(item.uid);
 }
 };

Chapter 7 ■ Intelligent Unit Movement

167

 // then command them to move to the clicked location
 if (uids.length>0){
 game.sendCommand(uids, {type:"move", to:{x:mouse.gameX/game.gridSize,
y:mouse.gameY/game.gridSize}});
 }
 }
 }
},

When the player right-clicks inside the game map, we first check to see whether the mouse is above an object.
If the player has not clicked an object, we call the game.sendCommand() method to send a move order to all

friendly vehicles and aircraft that are selected.
If the player has clicked an object, we similarly send either an attack, guard, or deploy command to the

appropriate units. We also pass the UID of the clicked item as a parameter called toUid within the order.
With the right-click logic in place, we now have to implement methods for sending and receiving game

commands.

Sending and Receiving Commands
We could have implemented sending commands by modifying the orders property of selected items inside the
click() method that we modified earlier. However, we are going to use a slightly more complex implementation.

Any clicking action that generates a command will call the game.sendCommand() method. The sendCommand()
method will pass the call to either the singleplayer or multiplayer object. These objects will then send the
command details back to the game.processCommand() method. Within the game.processCommand() method, we will
update the orders for all the appropriate objects. We will start by adding these methods to the game object inside
game.js, as shown in Listing 7-2.

Listing 7-2.  Implementing sendCommand() and processCommand() (game.js)

// Send command to either singleplayer or multiplayer object
sendCommand:function(uids,details){
 if (game.type=="singleplayer"){
 singleplayer.sendCommand(uids,details);
 } else {
 multiplayer.sendCommand(uids,details);
 }
},
getItemByUid:function(uid){
 for (var i = game.items.length - 1; i >= 0; i--){
 if(game.items[i].uid == uid){
 return game.items[i];
 }
 };
},
// Receive command from singleplayer or multiplayer object and send it to units
processCommand:function(uids,details){
 // In case the target "to" object is in terms of uid, fetch the target object
 var toObject;
 if (details.toUid){
 toObject = game.getItemByUid(details.toUid);
 if(!toObject || toObject.lifeCode=="dead"){

Chapter 7 ■ Intelligent Unit Movement

168

 // To object no longer exists. Invalid command
 return;
 }
 }
 
 for (var i in uids){
 var uid = uids[i];
 var item = game.getItemByUid(uid);
 //if uid is a valid item, set the order for the item
 if(item){
 item.orders = $.extend([],details);
 if(toObject) {
 item.orders.to = toObject;
 }
 }
 };
},

The sendCommand() method passes the call to either the singleplayer or multiplayer object’s sendCommand()
method based on the game type. Using this layer of abstraction allows us to use the same code for both single-player
and multiplayer while handling the commands differently.

While the single-player version of sendCommand() will just call processCommand() back immediately, the
multiplayer version will send the command to the server, which will then forward the command to all the players at
the same time.

We also implement the getItemByUid() method that looks up item UIDs and returns entity objects.
We pass UIDs instead of actual game objects to the sendCommand() method because of the multiplayer version of

the game. A typical item object contains a lot of details for animating and drawing the objects such as methods, sprite
sheet images, and all the item properties. While needed for drawing the item, transmitting this extra data to the server
and getting it back is a waste of bandwidth and quite unnecessary, especially since the entire object can be replaced
by a single integer (the UID).

The processCommand() method first looks up any toUid property and gets the resulting item. If no item with the
UID exists, it assumes the command is invalid and ignores the command. The method then looks up the items
passed in the uids array and sets their orders object to a copy of the order details provided in the parameters.

The next thing we will do is implement the singlePlayer object’s sendCommand() method inside
singleplayer.js, as shown in Listing 7-3.

Listing 7-3.  Implementing the Single-Player sendCommand() Method (singleplayer.js)

sendCommand:function(uids,details){
 game.processCommand(uids,details);
}

As you can see, the implementation of sendCommand() is fairly simple. We merely forward the call right to
game.processCommand(). However, if we wanted, we could also use this method to add functionality for saving
game commands, along with details about the currently running animation cycle, to implement the ability to
replay saved games.

Now that we have set up a mechanism for commanding units and setting their orders, we need to set up a way for
the units to process these orders and execute them.

Chapter 7 ■ IntellIgent UnIt MoveMent

169

Processing Orders
Our implementation for processing orders will be fairly simple. We will implement a method called processOrders()
for every entity that needs it and call the processOrders() method for all game items from inside the game
animation loop.

We will start by modifying the game object’s animationLoop() method inside game.js, as shown in Listing 7-4.

Listing 7-4. Calling processOrders() from Inside the Animation Loop (game.js)

animationLoop:function(){
 // Process orders for any item that handles it
 for (var i = game.items.length - 1; i >= 0; i--){
 if(game.items[i].processOrders){
 game.items[i].processOrders();
 }
 };

 // Animate each of the elements within the game
 for (var i = game.items.length - 1; i >= 0; i--){
 game.items[i].animate();
 };

 // Sort game items into a sortedItems array based on their x,y coordinates
 game.sortedItems = $.extend([],game.items);
 game.sortedItems.sort(function(a,b){
 return b.y-a.y + ((b.y==a.y)?(a.x-b.x):0);
 });
},

The code iterates through every game item and calls the item’s processOrders() method if it exists. Now, we can
implement the processOrders() method for the game entities one by one and watch as these entities start obeying
our commands.

Let’s start by implementing movement for aircraft.

Implementing Aircraft Movement
Unlike land vehicles, moving aircraft is fairly simple since aircraft are not affected by terrain, buildings, or other
vehicles. When an aircraft is given a move order, it will just turn toward the destination and then move forward in a
straight line. Once the aircraft nears its destination, it will go back to its float state.

We will implement this as a default processOrders() method for aircraft inside aircraft.js, as shown in
Listing 7-5.

Listing 7-5. Movement in the Aircraft Object’s Default processOrders() Method (aircraft.js)

processOrders:function(){
 this.lastMovementX = 0;
 this.lastMovementY = 0;
 switch (this.orders.type){
 case "move":

Chapter 7 ■ Intelligent Unit Movement

170

 // Move towards destination until distance from destination is less than aircraft radius
 var distanceFromDestinationSquared = (Math.pow(this.orders.to.x-this.x,2) +
Math.pow(this.orders.to.y-this.y,2));
 if (distanceFromDestinationSquared < Math.pow(this.radius/game.gridSize,2)) {
 this.orders = {type:"float"};
 } else {
 this.moveTo(this.orders.to);
 }
 break;
 }
},

We first reset two variables related to movement that we will use later. We then check the order type inside a
case statement.

In case the order type is move, we call the moveTo() method until the aircraft’s distance from the destination
(stored in the to parameter) is less than the aircraft’s radius. Once the aircraft has reached its destination, we change
the order back to float.

Right now, we have implemented only one order. Any time the aircraft gets an order it doesn’t know how to
handle, it will continue floating at its current location. We will be implementing more orders as we go along.

The next thing we will do is implement a default moveTo() method that will be used by both the aircraft
(see Listing 7-6).

Listing 7-6.  The Aircraft Object’s Default moveTo() Method (aircraft.js)

moveTo:function(destination){
 // Find out where we need to turn to get to destination
 var newDirection = findAngle(destination,this,this.directions);
 // Calculate difference between new direction and current direction
 var difference = angleDiff(this.direction,newDirection,this.directions);
 // Calculate amount that aircraft can turn per animation cycle
 var turnAmount = this.turnSpeed*game.turnSpeedAdjustmentFactor;
 if (Math.abs(difference)>turnAmount){
 this.direction = wrapDirection(this.direction+turnAmount*Math.abs
(difference)/difference,this.directions);
 } else {
 // Calculate distance that aircraft can move per animation cycle
 var movement = this.speed*game.speedAdjustmentFactor;
 // Calculate x and y components of the movement
 var angleRadians = -(Math.round(this.direction)/this.directions)*2*Math.PI ;
 this.lastMovementX = - (movement*Math.sin(angleRadians));
 this.lastMovementY = - (movement*Math.cos(angleRadians));
 this.x = (this.x +this.lastMovementX);
 this.y = (this.y +this.lastMovementY);
 }
},

We first calculate the angle from the aircraft to its destination using the findAngle() method and the difference
between the current and new direction using the angleDiff() method. The newDirection variable will have a value
between 0 and 7 (to reflect the directions that the aircraft can take), while the difference variable will have a value
between -4 and 4, with a negative sign indicating an anticlockwise turn is shorter than a clockwise turn.

We then calculate the amount the aircraft can turn based on its turnSpeed property and check to see whether the
item needs to turn more by comparing the angle difference with the turn amount.

Chapter 7 ■ Intelligent Unit Movement

171

In case the aircraft still needs to turn, we add the turnAmount value to its direction while keeping the sign of the
difference variable. We use the wrapDirection() method to ensure that the final aircraft direction is still between
0 and 7.

In case the aircraft has turned toward its destination, we calculate the movement distance based on its speed. We
then calculate the x and y components of the movement and add it to the aircraft’s x and y coordinates.

Of course, now that the aircraft direction can take noninteger values, we need to modify the aircraft object’s
default animate() method to ensure it rounds the direction before selecting the sprite (see Listing 7-7).

Listing 7-7.  Modifying animate() to Handle Noninteger Direction Values (aircraft.js)

animate:function(){
 // Consider an item healthy if it has more than 40% life
 if (this.life>this.hitPoints*0.4){
 this.lifeCode = "healthy";
 } else if (this.life <= 0){
 this.lifeCode = "dead";
 game.remove(this);
 return;
 } else {
 this.lifeCode = "damaged";
 }
 switch (this.action){
 case "fly":
 var direction = wrapDirection(Math.round(this.direction),this.directions);
 this.imageList = this.spriteArray["fly-"+ direction];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 }
 break;
 }
},

We first round the aircraft direction and then call wrapDirection() to ensure that the direction lies between 0
and 7. The rest of the method remains the same.

Next we will add the findAngle(), angleDiff(), and wrapDirection() methods to common.js, as shown in
Listing 7-8.

Listing 7-8.  Implementing findAngle(), angleDiff(), and wrapDirection() (common.js)

/* Common functions for turning and movement */
 
// Finds the angle between two objects in terms of a direction (where 0 <= angle < directions)
function findAngle(object,unit,directions){
 var dy = (object.y) - (unit.y);
 var dx = (object.x) - (unit.x);
 //Convert Arctan to value between (0 - directions)
 var angle = wrapDirection(directions/2-(Math.atan2(dx,dy)*directions/(2*Math.PI)),directions);
 return angle;
 }
 

Chapter 7 ■ Intelligent Unit Movement

172

// returns the smallest difference (value ranging between -directions/2 to +directions/2)
between two angles (where 0 <= angle < directions)
function angleDiff(angle1,angle2,directions){
 if (angle1>=directions/2){
 angle1 = angle1-directions;
 }
 if (angle2>=directions/2){
 angle2 = angle2-directions;
 }
  
 diff = angle2-angle1;
  
 if (diff<-directions/2){
 diff += directions;
 }
 if (diff>directions/2){
 diff -= directions;
 }
  
 return diff;
}
 
// Wrap value of direction so that it lies between 0 and directions-1
function wrapDirection(direction,directions){
 if (direction<0){
 direction += directions;
 }
 if (direction >= directions){
 direction -= directions;
 }
 return direction;
}

The last change we need to make is defining two movement-related properties within the game object inside
game.js (see Listing 7-9).

Listing 7-9.  Adding Movement-Related Properties to the game Object (game.js)

//Movement related properties
speedAdjustmentFactor:1/64,
turnSpeedAdjustmentFactor:1/8,

These two factors are used to convert an entity’s speed and turnSpeed values into in-game units for movement
and turning.

We are now ready to start moving our aircraft within the game, but before we do that, let’s simplify our level by
removing all the unnecessary items from the map. The new maps.js will look like Listing 7-10.

Chapter 7 ■ Intelligent Unit Movement

173

Listing 7-10.  Removing Unnecessary Items from the Map (maps.js)

var maps = {
 "singleplayer":[
 {
 "name":"Entities",
 "briefing": "In this level you will start commanding units and moving them around the map.",
  
 /* Map Details */
 "mapImage":"images/maps/level-one-debug-grid.png",
 "startX":2,
 "startY":3,
  
 /* Entities to be loaded */
 "requirements":{
 "buildings":["base","starport","harvester","ground-turret"],
 "vehicles":["transport","harvester","scout-tank","heavy-tank"],
 "aircraft":["chopper","wraith"],
 "terrain":["oilfield","bigrocks","smallrocks"]
 },
 
 /* Entities to be added */
 "items":[
 {"type":"buildings","name":"base","x":11,"y":14,"team":"blue"},
 {"type":"buildings","name":"starport","x":18,"y":14, "team":"blue"},
 {"type":"buildings","name":"harvester","x":20,"y":10, "team":"blue"},
 {"type":"buildings","name":"ground-turret","x":24,"y":7,
"team":"blue","direction":3},
 
 {"type":"vehicles","name":"transport","x":24,"y":10, "team":"blue","direction":2},
 {"type":"vehicles","name":"harvester","x":16,"y":12, "team":"blue","direction":3},
 {"type":"vehicles","name":"scout-tank","x":24,"y":14, "team":"blue","direction":4},
 {"type":"vehicles","name":"heavy-tank","x":24,"y":16, "team":"blue","direction":5},
  
 {"type":"aircraft","name":"chopper","x":7,"y":9, "team":"blue","direction":2},
 {"type":"aircraft","name":"wraith","x":11,"y":9, "team":"blue","direction":3},
  
 {"type":"terrain","name":"oilfield","x":3,"y":5, "action":"hint"},
 {"type":"terrain","name":"bigrocks","x":19,"y":6},
 {"type":"terrain","name":"smallrocks","x":8,"y":3}
]
 }
]
}

When you run the game in the browser, you should be able to select the two aircraft and move them around on
the new map shown in Figure 7-1.

Chapter 7 ■ Intelligent Unit Movement

174

When you select an aircraft and right-click the map somewhere, the aircraft should turn and move toward the
destination. You will notice that the wraith aircraft moves faster than the chopper because we specified a higher value
for speed in the wraith entity’s properties.

You may also notice that right-clicking a building or a friendly unit doesn’t do anything. This is because
right-clicking a friendly item generates the guard order, which we have not yet implemented.

Implementing movement for our aircraft was fairly simple because we took the creative liberty of assuming that
aircraft could avoid buildings, vehicles, and other aircraft by virtue of adjusting their height.

However, when it comes to vehicles, we can no longer do that. We need to worry about finding the shortest path
between a vehicle and its destination while driving around obstacles such as buildings and terrain. This is where
pathfinding comes in.

Pathfinding
Pathfinding, or pathing, is the process of finding the shortest path between two points. Typically it involves the
use of various algorithms to traverse a graph of nodes starting at one vertex and exploring adjacent nodes until the
destination node is reached.

Two of the most commonly used algorithms for graph-based pathfinding are Dijkstra’s algorithm and its variant
called the A* (pronounced “A star”) algorithm.

A* uses an additional distance heuristic that helps it find paths faster than Dijkstra. Because of its performance
and accuracy, it is widely used in games. You can read more about the algorithm at http://en.wikipedia.org/wiki/A*.
We will also be using A* for the vehicle pathing in our game.

We will use an excellent MIT-licensed JavaScript implementation of A* by Andrea Giammarchi. The code has
been optimized for JavaScript, and its performance even on large graphs is fairly good. You can see the latest code

Figure 7-1.  Moving aircraft around the new map

http://en.wikipedia.org/wiki/A

Chapter 7 ■ Intelligent Unit Movement

175

as well as play with a live demo at http://devpro.it/javascript_id_137.html. We will add a reference to the A*
implementation (stored in astar.js) to the head section of index.html, as shown in Listing 7-11.

Listing 7-11.  Adding Reference to the A* Implementation (index.html)

<!-- A* Implementation by Andrea Giammarchi -->
<script src="js/astar.js" type="text/javascript" charset="utf-8"></script>

The implementation, while fairly complex, is relatively easy to use. The code gives us access to an Astar()
method that accepts four parameters: the map graph for us to use, the starting coordinates, the ending coordinates,
and optionally a name for the heuristic to use.

The method returns either an array with all the intermediate steps of the shortest path or an empty array in case
there is no possible path.

Now that we have our A* algorithm in place, we need to provide it with a graph or grid for pathfinding.

Defining Our Pathfinding Grid
We have already broken our map into a grid of squares with the dimensions 20 pixels by 20 pixels. We will store the
pathfinding grid as a two-dimensional array with values of 0 and 1 for passable and impassable squares, respectively.

Before we can create this array, we will need to modify our map to define all the impassable areas of terrain on
the map. We will do this by adding a few new properties to the first level in maps.js, as shown in Listing 7-12.

Listing 7-12.  Adding Properties for Pathfinding to the Level (maps.js)

/* Map coordinates that are obstructed by terrain*/
"mapGridWidth":60,
"mapGridHeight":40,
"mapObstructedTerrain":[
 [49,8], [50,8], [51,8], [51,9], [52,9], [53,9], [53,10], [53,11], [53,12], [53,13], [53,14],
[53,15], [53,16], [52,16], [52,17], [52,18], [52,19], [51,19], [50,19], [50,18], [50,17], [49,17],
[49,18], [48,18], [47,18], [47,17], [47,16], [48,16], [49,16], [49,15], [49,14], [48,14], [48,13],
[48,12], [49,12], [49,11], [50,11], [50,10], [49,10], [49,9], [44,0], [45,0], [45,1], [45,2],
[46,2], [47,2], [47,3], [48,3], [48,4], [48,5], [49,5], [49,6], [49,7], [50,7], [51,7], [51,6],
[51,5], [51,4], [52,4], [53,4], [53,3], [54,3], [55,3], [55,2], [56,2], [56,1], [56,0], [55,0],
[43,19], [44,19], [45,19], [46,19], [47,19], [48,19], [48,20], [48,21], [47,21], [46,21], [45,21],
[44,21], [43,21], [43,20], [41,22], [42,22], [43,22], [44,22], [45,22], [46,22], [47,22], [48,22],
[49,22], [50,22], [50,23], [50,24], [49,24], [48,24], [47,24], [47,25], [47,26], [47,27], [47,28],
[47,29], [47,30], [46,30], [45,30], [44,30], [43,30], [43,29], [43,28], [43,27], [43,26], [43,25],
[43,24], [42,24], [41,24], [41,23], [48,39], [49,39], [50,39], [51,39], [52,39], [53,39], [54,39],
[55,39], [56,39], [57,39], [58,39], [59,39], [59,38], [59,37], [59,36], [59,35], [59,34], [59,33],
[59,32], [59,31], [59,30], [59,29], [0,0], [1,0], [2,0], [1,1], [2,1], [10,3], [11,3], [12,3],
[12,2], [13,2], [14,2], [14,3], [14,4], [15,4], [15,5], [15,6], [14,6], [13,6], [13,5], [12,5],
[11,5], [10,5], [10,4], [3,9], [4,9], [5,9], [5,10], [6,10], [7,10], [8,10], [9,10], [9,11],
[10,11], [11,11], [11,10], [12,10], [13,10], [13,11], [13,12], [12,12], [11,12], [10,12], [9,12],
[8,12], [7,12], [7,13], [7,14], [6,14], [5,14], [5,13], [5,12], [5,11], [4,11], [3,11], [3,10],
[33,33], [34,33], [35,33], [35,34], [35,35], [34,35], [33,35], [33,34], [27,39], [27,38], [27,37],
[28,37], [28,36], [28,35], [28,34], [28,33], [28,32], [28,31], [28,30], [28,29], [29,29], [29,28],
[29,27], [29,26], [29,25], [29,24], [29,23], [30,23], [31,23], [32,23], [32,22], [32,21], [31,21],
[30,21], [30,22], [29,22], [28,22], [27,22], [26,22], [26,21], [25,21], [24,21], [24,22], [24,23],
[25,23], [26,23], [26,24], [25,24], [25,25], [24,25], [24,26], [24,27], [25,27], [25,28], [25,29],
[24,29], [23,29], [23,30], [23,31], [24,31], [25,31], [25,32], [25,33], [24,33], [23,33], [23,34],

http://devpro.it/javascript_id_137.html

Chapter 7 ■ Intelligent Unit Movement

176

[23,35], [24,35], [24,36], [24,37], [23,37], [22,37], [22,38], [22,39], [23,39], [24,39], [25,39],
[26,0], [26,1], [25,1], [25,2], [25,3], [26,3], [27,3], [27,2], [28,2], [29,2], [29,3], [30,3],
[31,3], [31,2], [31,1], [32,1], [32,0], [33,0], [32,8], [33,8], [34,8], [34,9], [34,10], [33,10],
[32,10], [32,9], [8,29], [9,29], [9,30], [17,32], [18,32], [19,32], [19,33], [18,33], [17,33],
[18,34], [19,34], [3,27], [4,27], [4,26], [3,26], [2,26], [3,25], [4,25], [9,20], [10,20], [11,20],
[11,21], [10,21], [10,19], [19,7], [15,7], [29,12], [30,13], [20,14], [21,14], [34,13], [35,13],
[36,13], [36,14], [35,14], [34,14], [35,15], [36,15], [16,18], [17,18], [18,18], [16,19], [17,19],
[18,19], [17,20], [18,20], [11,19], [58,0], [59,0], [58,1], [59,1], [59,2], [58,3], [59,3], [58,4],
[59,4], [59,5], [58,6], [59,6], [58,7], [59,7], [59,8], [58,9], [59,9], [58,10], [59,10], [59,11],
[52,6], [53,6], [54,6], [52,7], [53,7], [54,7], [53,8], [54,8], [44,17], [46,32], [55,32], [54,28],
[26,34], [34,34], [4,10], [6,11], [6,12], [6,13], [7,11], [8,11], [12,11], [27,0], [27,1], [26,2],
[28,1], [28,0], [29,0], [29,1], [30,2], [30,1], [30,0], [31,0], [33,9], [46,0], [47,0], [48,0],
[49,0], [50,0], [51,0], [52,0], [53,0], [54,0], [55,1], [54,1], [53,1], [52,1], [51,1], [50,1],
[49,1], [48,1], [47,1], [46,1], [48,2], [49,2], [50,2], [51,2], [52,2], [53,2], [54,2], [52,3],
[51,3], [50,3], [49,3], [49,4], [50,4], [50,5], [50,6], [50,9], [51,10], [52,10], [51,11], [52,11],
[50,12], [51,12], [52,12], [49,13], [50,13], [51,13], [52,13], [50,14], [51,14], [52,14], [50,15],
[51,15], [52,15], [50,16], [51,16], [51,17], [48,17], [51,18], [44,20], [45,20], [46,20], [47,20],
[42,23], [43,23], [44,23], [45,23], [46,23], [47,23], [48,23], [49,23], [44,24], [45,24], [46,24],
[44,25], [45,25], [46,25], [44,26], [45,26], [46,26], [44,27], [45,27], [46,27], [44,28], [45,28],
[46,28], [44,29], [45,29], [46,29], [11,4], [12,4], [13,4], [13,3], [14,5], [25,22], [31,22],
[27,23], [28,23], [27,24], [28,24], [26,25], [27,25], [28,25], [25,26], [26,26], [27,26], [28,26],
[26,27], [27,27], [28,27], [26,28], [27,28], [28,28], [26,29], [27,29], [24,30], [25,30], [26,30],
[27,30], [26,31], [27,31], [26,32], [27,32], [26,33], [27,33], [24,34], [25,34], [27,34], [25,35],
[26,35], [27,35], [25,36], [26,36], [27,36], [25,37], [26,37], [23,38], [24,38], [25,38], [26,38],
[26,39], [2,25], [9,19], [36,31]
],

We first define two properties called mapGridWidth and mapGridHeight and finally an extremely large and
scary-looking array called mapObstructedTerrain. This array merely contains the x and y coordinates for every grid
inside our map that is impassable. This includes areas with trees, mountains, water, craters, and lava.

Note■■   If you plan to add a lot of levels to your game, you should take the time to design a level editor that generates
this array for you automatically instead of trying to create it by hand.

Now that we have these properties in place, we need to generate a terrain grid from this data when we load the
level. We will do this within the singleplayer object’s startCurrentLevel() method inside singleplayer.js
(see Listing 7-13).

Listing 7-13.  Creating the Terrain Grid When Starting Level (singleplayer.js)

startCurrentLevel:function(){
 // Load all the items for the level
 var level = maps.singleplayer[singleplayer.currentLevel];
 
 // Don't allow player to enter mission until all assets for the level are loaded
 $("#entermission").attr("disabled", true);
  
 // Load all the assets for the level
 game.currentMapImage = loader.loadImage(level.mapImage);
 game.currentLevel = level;
 

Chapter 7 ■ Intelligent Unit Movement

177

 game.offsetX = level.startX * game.gridSize;
 game.offsetY = level.startY * game.gridSize;
 
 // Load level Requirements
 game.resetArrays();
 for (var type in level.requirements){
 var requirementArray = level.requirements[type];
 for (var i=0; i < requirementArray.length; i++) {
 var name = requirementArray[i];
 if (window[type]){
 window[type].load(name);
 } else {
 console.log('Could not load type :',type);
 }
 };
 }
 
 for (var i = level.items.length - 1; i >= 0; i--){
 var itemDetails = level.items[i];
 game.add(itemDetails);
 };
 
 // Create a grid that stores all obstructed tiles as 1 and unobstructed as 0
 game.currentMapTerrainGrid = [];
 for (var y=0; y < level.mapGridHeight; y++) {
 game.currentMapTerrainGrid[y] = [];
 for (var x=0; x< level.mapGridWidth; x++) {
 game.currentMapTerrainGrid[y][x] = 0;
 }
 };
 for (var i = level.mapObstructedTerrain.length - 1; i >= 0; i--){
 var obstruction = level.mapObstructedTerrain[i];
 game.currentMapTerrainGrid[obstruction[1]][obstruction[0]] = 1;
 };
 game.currentMapPassableGrid = undefined;
 
 // Enable the enter mission button once all assets are loaded
 if (loader.loaded){
 $("#entermission").removeAttr("disabled");
 } else {
 loader.onload = function(){
 $("#entermission").removeAttr("disabled");
 }
 }
 
 // Load the mission screen with the current briefing
 $('#missonbriefing').html(level.briefing.replace(/\n/g,'

'));
 $("#missionscreen").show();
},

Chapter 7 ■ Intelligent Unit Movement

178

We initialize an array called currentMapTerrainGrid inside the game object and set it to the dimensions of our
map using mapGridWidth and mapGridHeight. We then set all the obstructed squares to 1 and leave the unobstructed
tiles as 0.

If we were to highlight the obstructed squares in currentMapTerrainGrid on our map, it would look like Figure 7-2.

While currentMapTerrainGrid marks out all the obstacles in the map terrain, it still does not include the
buildings and terrain entities on the map.

We will keep another array inside the game object called currentMapPassableGrid that will combine the building
and terrain entities and the currentMapTerrainGrid array we defined earlier. This array will need to be re-created
every time buildings or terrain get added to or removed from the game. We will do this in a rebuildPassableGrid()
method within the game object (see Listing 7-14).

Listing 7-14.  rebuildPassableGrid() Method in game Object (game.js)

rebuildPassableGrid:function(){
 game.currentMapPassableGrid = $.extend(true,[],game.currentMapTerrainGrid);
 for (var i = game.items.length - 1; i >= 0; i--){
 var item = game.items[i];
 if(item.type == "buildings" || item.type == "terrain"){
 for (var y = item.passableGrid.length - 1; y >= 0; y--){
 for (var x = item.passableGrid[y].length - 1; x >= 0; x--){

Figure 7-2.  Obstructed grid squares defined in currentMapTerrainGrid

Chapter 7 ■ IntellIgent UnIt MoveMent

179

 if(item.passableGrid[y][x]){
 game.currentMapPassableGrid[item.y+y][item.x+x] = 1;
 }
 };
 };
 }
 };
},

We first copy the currentMapTerrainGrid array into currentMapPassableGrid. We then iterate through
all the game items and use the passableGrid property that we defined for all buildings and terrain to mark
out grid squares that are not passable. If we were to highlight the obstructed squares in our map based on the
currentMapPassableGrid, it would look like Figure 7-3.

Because of the way we define passableGrid for each building, it is possible to allow portions of buildings to be
passable (for example, the lower portion of the starport).

We will need to ensure that game.currentMapPassableGrid is reset anytime a building is added or removed
from the game. We do this by adding an extra condition inside the add() and remove() methods of the game object, as
shown in Listing 7-15.

Figure 7-3. Obstructed grid squares defined in currentMapPassableGrid

Chapter 7 ■ Intelligent Unit Movement

180

Listing 7-15.  Clearing currentMapPassableGrid Inside add() and remove() (game.js)

add:function(itemDetails) {
 // Set a unique id for the item
 if (!itemDetails.uid){
 itemDetails.uid = game.counter++;
 }
 
 var item = window[itemDetails.type].add(itemDetails);
 
 // Add the item to the items array
 game.items.push(item);
 // Add the item to the type specific array
 game[item.type].push(item);
  
 if(item.type == "buildings" || item.type == "terrain"){
 game.currentMapPassableGrid = undefined;
 }
 return item;
},
remove:function(item){
 // Unselect item if it is selected
 item.selected = false;
 for (var i = game.selectedItems.length - 1; i >= 0; i--){
 if(game.selectedItems[i].uid == item.uid){
 game.selectedItems.splice(i,1);
 break;
 }
 };
 
 // Remove item from the items array
 for (var i = game.items.length - 1; i >= 0; i--){
 if(game.items[i].uid == item.uid){
 game.items.splice(i,1);
 break;
 }
 };
 
 // Remove items from the type specific array
 for (var i = game[item.type].length - 1; i >= 0; i--){
 if(game[item.type][i].uid == item.uid){
 game[item.type].splice(i,1);
 break;
 }
 };
 
 if(item.type == "buildings" || item.type == "terrain"){
 game.currentMapPassableGrid = undefined;
 }
},

Chapter 7 ■ Intelligent Unit Movement

181

Within both methods, we check whether the item being added or removed is a building or terrain type and, if so,
reset the currentMapPassableGrid variable.

Now that we have defined the movement grid for our A* algorithm, we are ready to implement vehicle
movement.

Implementing Vehicle Movement
We will start by adding a default processOrders() method for the vehicles object inside vehicles.js, as shown in
Listing 7-16.

Listing 7-16.  The Default processOrders() Method for Vehicles (vehicles.js)

processOrders:function(){
 this.lastMovementX = 0;
 this.lastMovementY = 0;
 switch (this.orders.type){
 case "move":
 // Move towards destination until distance from destination is less than vehicle radius
 var distanceFromDestinationSquared = (Math.pow(this.orders.to.x-this.x,2) +
Math.pow(this.orders.to.y-this.y,2));
 if (distanceFromDestinationSquared < Math.pow(this.radius/game.gridSize,2)) {
 this.orders = {type:"stand"};
 return;
 } else {
 // Try to move to the destination
 var moving = this.moveTo(this.orders.to);
 if(!moving){
 // Pathfinding couldn't find a path so stop
 this.orders = {type:"stand"};
 return;
 }
 }
 break;
 }
},

The method is fairly similar to the processOrders() method that we defined for aircraft. The one subtle
difference is that we check whether the moveTo() method returns a value of true indicating it is able to move toward
the destination and reset the order to stand in case it does not. We do this because it is possible for the pathfinding
algorithm to not find a valid path, and moveTo() will return a value indicating this.

Next, we will implement the default moveTo() method for vehicles, as shown in Listing 7-17.

Listing 7-17.  The Default moveTo() Method for Vehicles (vehicles.js)

moveTo:function(destination){
 if(!game.currentMapPassableGrid){
 game.rebuildPassableGrid();
 }
 

Chapter 7 ■ Intelligent Unit Movement

182

 // First find path to destination
 var start = [Math.floor(this.x),Math.floor(this.y)];
 var end = [Math.floor(destination.x),Math.floor(destination.y)];
 
 var grid = $.extend(true,[],game.currentMapPassableGrid);
 // Allow destination to be "movable" so that algorithm can find a path
 if(destination.type == "buildings"||destination.type == "terrain"){
 grid[Math.floor(destination.y)][Math.floor(destination.x)] = 0;
 }
 
 var newDirection;
 // if vehicle is outside map bounds, just go straight towards goal
 if (start[1]<0 || start[1]>=game.currentLevel.mapGridHeight || start[0]<0 ||
start[0]>= game.currentLevel.mapGridWidth){
 this.orders.path = [this,destination];
 newDirection = findAngle(destination,this,this.directions);
 } else {
 //Use A* algorithm to try and find a path to the destination
 this.orders.path = AStar(grid,start,end,'Euclidean');
 if (this.orders.path.length>1){
 var nextStep = {x:this.orders.path[1].x+0.5,y:this.orders.path[1].y+0.5};
 newDirection = findAngle(nextStep,this,this.directions);
 } else if(start[0]==end[0] && start[1] == end[1]){
 // Reached destination grid;
 this.orders.path = [this,destination];
 newDirection = findAngle(destination,this,this.directions);
 } else {
 // There is no path
 return false;
 }
 }
 
 // Calculate turn amount for new direction
 var difference = angleDiff(this.direction,newDirection,this.directions);
 var turnAmount = this.turnSpeed*game.turnSpeedAdjustmentFactor;
 
 // Move forward, but keep turning as needed
 var movement = this.speed*game.speedAdjustmentFactor;
 var angleRadians = -(Math.round(this.direction)/this.directions)*2*Math.PI;
 this.lastMovementX = - (movement*Math.sin(angleRadians));
 this.lastMovementY = - (movement*Math.cos(angleRadians));
 this.x = (this.x +this.lastMovementX);
 this.y = (this.y +this.lastMovementY);
  
 if (Math.abs(difference)>turnAmount){
 this.direction = wrapDirection(this.direction + turnAmount*Math.abs(difference)/difference,
this.directions);
 }
 
 return true;
},

Chapter 7 ■ Intelligent Unit Movement

183

We start by checking whether game.currentMapPassableGrid is defined and calling
game.rebuildPassableGrid() if it is not defined. We then define the start and end values for our path by
truncating the vehicle and destination locations.

Next, we copy the game.currentMapPassableGrid into a grid variable and define the destination grid square as
passable in case the destination is a building or terrain. This hack lets the A* algorithm find a path to a building even
though the destination is impassable.

The next step is calculating the path and new direction. We first check whether the vehicle is outside the map
bounds and, if so, head straight toward the destination by defining the start and end locations of our path using
the vehicle and destination and calculating newDirection using the findAngle() method. We do this because the
AStar() method would fail if we passed it starting coordinates that were outside the grid.

If the vehicle is within the map bounds, we call the AStar() method while passing it values of start, end, and
the grid. We specify a heuristic method of Euclidean, which allows diagonal movement and seems to work well for
our game.

If the AStar() method returns a path with at least two elements, we calculate newDirection by finding the angle
from the vehicle to the middle of the next grid.

If the path does not contain at least two elements, we check whether this is because we have reached the
destination grid square and, if so, aim toward the final destination. If not, we assume this is because AStar() could
not find a path and return false.

Finally, we use the newDirection and turnSpeed and speed values to both move the vehicle forward and turn
it toward newDirection. Unlike our aircraft, vehicles should not be able to turn in place, and we implement this by
making both movement and turning happen simultaneously.

With the heart of our pathfinding method implemented, we will need to make one last change to the vehicles
object. We will modify the default animate() method to account for noninteger values of direction, as shown in
Listing 7-18.

Listing 7-18.  Modifying animate() to Handle Noninteger Direction Values (vehicles.js)

animate:function(){
 // Consider an item healthy if it has more than 40% life
 if (this.life>this.hitPoints*0.4){
 this.lifeCode = "healthy";
 } else if (this.life <= 0){
 this.lifeCode = "dead";
 game.remove(this);
 return;
 } else {
 this.lifeCode = "damaged";
 }
  
 switch (this.action){
 case "stand":
 var direction = wrapDirection(Math.round(this.direction),this.directions);
 this.imageList = this.spriteArray["stand-"+direction];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
  
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 }
 break;
 }
},

Chapter 7 ■ Intelligent Unit Movement

184

If you run the game now, you should be able to select vehicles and move them around the map by right-clicking
a spot on the map. The vehicles will move along a path that avoids all the terrain and building obstacles. Figure 7-4
illustrates a typical path returned by the pathfinding algorithm.

One thing that you will notice is that while the vehicles avoid unpassable terrain, they still drive over other
vehicles.

One simple way to fix this is to just mark all squares occupied by any vehicle as unpassable. However, this
simplistic approach might end up blocking very large portions of the map since vehicles often move across multiple
grid squares. The other disadvantage of this method is that if we try to move a bunch of vehicles through a narrow
passage, the first vehicle will block the passage, causing the pathfinding for the vehicles behind to try to find a longer
alternate route or, worse, assume there is no possible path and give up.

A better alternative is to implement a steering step that checks for collisions with other objects and modifies the
vehicle’s direction while still trying to maintain the original path as far as possible.

Collision Detection and Steering
Steering, like pathfinding, is a fairly vast AI subject. The idea of applying steering behavior in games has been around
for a long time, but it was popularized by the work of Craig Reynolds in the mid to late 1980s. His paper “Steering
Behaviors for Autonomous Characters” and his Java demos are still considered the basic starting point for developing
steering mechanisms in games. You can read more about his research and look at demos of various steering
mechanisms at http://www.red3d.com/cwr/steer/.

We will use a fairly simple implementation for our game. We will first check to see whether moving a vehicle
along its present direction will result in collisions with any object. If there are colliding objects, we will create

Figure 7-4.  Typical movement path using pathfinding algorithm

http://www.red3d.com/cwr/steer/

Chapter 7 ■ Intelligent Unit Movement

185

repulsive forces from any colliding objects to our vehicle and a mild attractive force toward the next grid square in the
pathfinding path.

We will then combine all of these forces as vectors to see which direction the vehicle will need to move to get
away from the collisions. We will steer the vehicle toward this direction until the vehicle is no longer colliding with any
object, at which point the vehicle will return to the basic pathfinding mode.

We will distinguish between hard and soft collisions based on the distance from colliding objects. A vehicle that
is about to have a soft collision may still move while turning; however, a vehicle about to have hard collision will not
move forward at all and will only turn away.

We will start by implementing a default checkCollisionsObject() method for the vehicle object inside
vehicles.js, as shown in Listing 7-19.

Listing 7-19.  The Default checkCollisionObjects() Method (vehicles.js)

// Make a list of collisions that the vehicle will have if it goes along present path
checkCollisionObjects:function(grid){
 // Calculate new position on present path
 var movement = this.speed*game.speedAdjustmentFactor;
 var angleRadians = -(Math.round(this.direction)/this.directions)*2*Math.PI;
 var newX = this.x - (movement*Math.sin(angleRadians));
 var newY = this.y - (movement*Math.cos(angleRadians));
 
 // List of objects that will collide after next movement step
 var collisionObjects = [];

 var x1 = Math.max(0,Math.floor(newX)-3);
 var x2 = Math.min(game.currentLevel.mapGridWidth-1,Math.floor(newX)+3);
 var y1 = Math.max(0,Math.floor(newY)-3);
 var y2 = Math.min(game.currentLevel.mapGridHeight-1,Math.floor(newY)+3);
 // Test grid upto 3 squares away
 for (var j=x1; j <= x2;j++){
 for(var i=y1; i<= y2 ;i++){
 if(grid[i][j]==1){ // grid square is obsutructed
 if (Math.pow(j+0.5-newX,2)+Math.pow(i+0.5-newY,2) <
Math.pow(this.radius/game.gridSize+0.1,2)){
 // Distance of obstructed grid from vehicle is less than hard collision threshold
 collisionObjects.push({collisionType:"hard", with:{type:"wall",x:j+0.5,y:i+0.5}});
 } else if (Math.pow(j+0.5-newX,2)+Math.pow(i+0.5-newY,2) <
Math.pow(this.radius/game.gridSize+0.7,2)){
 // Distance of obstructed grid from vehicle is less than soft collision
threshold
 collisionObjects.push({collisionType:"soft", with:{type:"wall",x:j+0.5,y:i+0.5}});
 }
 }
 };
 };
  
 for (var i = game.vehicles.length - 1; i >= 0; i--){
 var vehicle = game.vehicles[i];
 // Test vehicles that are less than 3 squares away for collisions
 if (vehicle != this && Math.abs(vehicle.x-this.x)<3 && Math.abs(vehicle.y-this.y)<3){
 if (Math.pow(vehicle.x-newX,2) + Math.pow(vehicle.y-newY,2) <
Math.pow((this.radius+vehicle.radius)/game.gridSize,2)){

Chapter 7 ■ Intelligent Unit Movement

186

 // Distance between vehicles is less than hard collision threshold (sum of vehicle
radii)
 collisionObjects.push({collisionType:"hard",with:vehicle});
 } else if (Math.pow(vehicle.x-newX,2) + Math.pow(vehicle.y-newY,2) <
Math.pow((this.radius*1.5+vehicle.radius)/game.gridSize,2)){
 // Distance between vehicles is less than soft collision threshold (1.5 times
vehicle radius + colliding vehicle radius)
 collisionObjects.push({collisionType:"soft",with:vehicle});
 }
 }
 };
 
 return collisionObjects;
},

We first calculate the new position of the vehicle if it moves along its current direction. We then check to see
whether there are any impassable grid squares nearby that might collide with the vehicle in its new position by
comparing the distances between their centers with certain threshold values based on the vehicle radius. We mark
collisions as “hard” if they are colliding or “soft” if they are almost ready to collide. All collisions are then added to the
collisionObjects array.

We then repeat this process with the vehicles array by testing all vehicles that are close by for possible collisions
using the sum of their radii as a threshold distance.

Now that we have a list of colliding objects, we will modify the default moveTo() method we defined earlier to
handle collisions (see Listing 7-20).

Listing 7-20.  Handling Collisions Inside the default moveTo() Method (vehicles.js)

moveTo:function(destination){
 if(!game.currentMapPassableGrid){
 game.rebuildPassableGrid();
 }
 
 // First find path to destination
 var start = [Math.floor(this.x),Math.floor(this.y)];
 var end = [Math.floor(destination.x),Math.floor(destination.y)];
 
 var grid = $.extend(true,[],game.currentMapPassableGrid);
 // Allow destination to be "movable" so that algorithm can find a path
 if(destination.type == "buildings"||destination.type == "terrain"){
 grid[Math.floor(destination.y)][Math.floor(destination.x)] = 0;
 }
 
 var newDirection;
 // if vehicle is outside map bounds, just go straight towards goal
 if (start[1]<0 || start[1]>=game.currentLevel.mapGridHeight || start[0]<0 ||
start[0]>= game.currentLevel.mapGridWidth){
 this.orders.path = [this,destination];
 newDirection = findAngle(destination,this,this.directions);
 } else {
 //Use A* algorithm to try and find a path to the destination
 this.orders.path = AStar(grid,start,end,'Euclidean');

Chapter 7 ■ Intelligent Unit Movement

187

 if (this.orders.path.length>1){
 var nextStep = {x:this.orders.path[1].x+0.5,y:this.orders.path[1].y+0.5};
 newDirection = findAngle(nextStep,this,this.directions);
 } else if(start[0]==end[0] && start[1] == end[1]){
 // Reached destination grid square
 this.orders.path = [this,destination];
 newDirection = findAngle(destination,this,this.directions);
 } else {
 // There is no path
 return false;
 }
 }
 
 // check if moving along current direction might cause collision..
 // If so, change newDirection
 var collisionObjects = this.checkCollisionObjects(grid);
 this.hardCollision = false;
 if (collisionObjects.length>0){
 this.colliding = true;
 
 // Create a force vector object that adds up repulsion from all colliding objects
 var forceVector = {x:0,y:0}
 // By default, the next step has a mild attraction force
 collisionObjects.push({collisionType:"attraction", with:{x:this.orders.path[1].x+0.5,
y:this.orders.path[1].y+0.5}});
 for (var i = collisionObjects.length - 1; i >= 0; i--){
 var collObject = collisionObjects[i];
 var objectAngle = findAngle(collObject.with,this,this.directions);
 var objectAngleRadians = -(objectAngle/this.directions)* 2*Math.PI;
 var forceMagnitude;
 switch(collObject.collisionType){
 case "hard":
 forceMagnitude = 2;
 this.hardCollision = true;
 break;
 case "soft":
 forceMagnitude = 1;
 break;
 case "attraction":
 forceMagnitude = -0.25;
 break;
 }
  
 forceVector.x += (forceMagnitude*Math.sin(objectAngleRadians));
 forceVector.y += (forceMagnitude*Math.cos(objectAngleRadians));
 };
 // Find a new direction based on the force vector
 newDirection = findAngle(forceVector,{x:0,y:0},this.directions);
 } else {
 this.colliding = false;
 }
  

Chapter 7 ■ Intelligent Unit Movement

188

 // Calculate turn amount for new direction
 var difference = angleDiff(this.direction,newDirection,this.directions);
 var turnAmount = this.turnSpeed*game.turnSpeedAdjustmentFactor;
 
 // Either turn or move forward based on collision type
 if (this.hardCollision){
 // In case of hard collision, do not move forward, just turn towards new direction
 if (Math.abs(difference)>turnAmount){
 this.direction = wrapDirection(this.direction+
turnAmount*Math.abs(difference)/difference, this.directions);
 }
 } else {
 // Otherwise, move forward, but keep turning as needed
 var movement = this.speed*game.speedAdjustmentFactor;
 var angleRadians = -(Math.round(this.direction)/this.directions)* 2*Math.PI ;
 this.lastMovementX = - (movement*Math.sin(angleRadians));
 this.lastMovementY = - (movement*Math.cos(angleRadians));
 this.x = (this.x +this.lastMovementX);
 this.y = (this.y +this.lastMovementY);
 if (Math.abs(difference)>turnAmount){
 this.direction = wrapDirection(this.direction+
turnAmount*Math.abs(difference)/difference, this.directions);
 }
 }
 return true;
},

After the initial pathfinding step, we call the checkCollisionObjects() method and get a list of objects that the
vehicle will collide with.

We then iterate through this list of objects and define a repulsive force for each with a magnitude of either 1 or 2
based on whether the collision is “soft” or “hard.” We also define an attractive force toward the next pathfinding grid
square. Finally, we add up all these forces into a forceVector object and use it to calculate the direction that would
take the vehicle the farthest away from all the forces and assign it to the newDirection variable.

What this means is as long as there are no colliding objects, the vehicle will head toward the next grid square
defined in its path. The moment the vehicle senses a collision, its primary motivation will be to avoid the collision by
taking evasive action. Once the collision threat has been averted, the vehicle will return to its original path-following
behavior.

We add an extra check to prevent the vehicle from moving forward if movement will result in a hard collision. As
a result, the vehicle will stop completely rather than actually collide with another object.

If you run the game now and try to move a vehicle, you will find that it steers around other vehicles to avoid
colliding with them.

One problem that you might notice is that if you try to move multiple vehicles to the same spot, the first one stops
at the correct location, while the others keep circling around trying in vain to reach the occupied stop. We will need to
fix this by adding some intelligence to the way a vehicle handles trying to move to a blocked spot.

The ideal behavior would be to stop at a little distance from the destination if the destination is blocked and to
stop even farther away if the vehicle has been colliding for a long time without reaching its destination.

We will implement this by modifying the default processOrders() method, as shown in Listing 7-21.

Chapter 7 ■ IntellIgent UnIt MoveMent

189

Listing 7-21. Modifying processOrders() to Handle Stopping (vehicles.js)

processOrders:function(){
 this.lastMovementX = 0;
 this.lastMovementY = 0;
 switch (this.orders.type){
 case "move":
 // Move towards destination until distance from destination is less than vehicle radius
 var distanceFromDestinationSquared = (Math.pow(this.orders.to.x-this.x,2) +
Math.pow(this.orders.to.y-this.y,2));
 if (distanceFromDestinationSquared < Math.pow(this.radius/game.gridSize,2)) {
 //Stop when within one radius of the destination
 this.orders = {type:"stand"};
 return;
 } else if (distanceFromDestinationSquared <Math.pow(this.radius*3/game.gridSize,2)) {
 //Stop when within 3 radius of the destination if colliding with something
 this.orders = {type:"stand"};
 return;
 } else {
 if (this.colliding && (Math.pow(this.orders.to.x-this.x,2) +
Math.pow(this.orders.to.y-this.y,2))<Math.pow(this.radius*5/game.gridSize,2)) {
 // Count collsions within 5 radius distance of goal
 if (!this.orders.collisionCount){
 this.orders.collisionCount = 1
 } else {
 this.orders.collisionCount ++;
 }
 // Stop if more than 30 collisions occur
 if (this.orders.collisionCount > 30) {
 this.orders = {type:"stand"};
 return;
 }
 }
 var moving = this.moveTo(this.orders.to);
 // Pathfinding couldn't find a path so stop
 if(!moving){
 this.orders = {type:"stand"};
 return;
 }
 }
 break;
 }
},

We first try to stop at the destination if the vehicle is within 1 radius of the destination. We also stop if the vehicle
is colliding and within a 3-radius distance of the destination. Finally, we stop if the vehicle has been colliding more
than 30 times while being within a 5-radius distance of the destination. This last condition handles situations where
the vehicle has been bumping around a crowded area for a while without finding a way to reach its destination.

If you run the game now and try to move multiple vehicles together, you will see that they intelligently stop near
their destination even in crowded areas.

Chapter 7 ■ Intelligent Unit Movement

190

At this point, we have a reasonably good pathfinding and steering solution for intelligent unit movement. This
system can be developed further to improve performance and add other intelligent behavior such as queuing,
flocking, and leader following, depending on your game requirements. You should definitely research this topic
further as you implement unit movement within your own games, starting with the work by Craig Reynolds
(www.red3d.com/cwr/steer/).

Now that we have vehicle movement working, let’s take the time to implement one more movement-related
order: deploying the harvester.

Deploying the Harvester
We designed the harvester as a deployable vehicle that opened up into a harvester building when deployed on an oil
field. We already set up the code to pass the deploy order to a harvester when the player right-clicks an oil field. Now
we will implement the deploy case within the vehicle object’s processOrders() method inside vehicles.js, as
shown in Listing 7-22.

Listing 7-22.  Implementation of the deploy Case Inside processOrders() (vehicles.js)

case "deploy":
 // If oilfield has been used already, then cancel order
 if(this.orders.to.lifeCode == "dead"){
 this.orders = {type:"stand"};
 return;
 }
 // Move to middle of oil field
 var target = {x:this.orders.to.x+1,y:this.orders.to.y+0.5,type:"terrain"};
 var distanceFromTargetSquared = (Math.pow(target.x-this.x,2) + Math.pow(target.y-this.y,2));
 if (distanceFromTargetSquared<Math.pow(this.radius*2/game.gridSize,2)) {
 // After reaching oil field, turn harvester to point towards left (direction 6)
 var difference = angleDiff(this.direction,6,this.directions);
 var turnAmount = this.turnSpeed*game.turnSpeedAdjustmentFactor;
 if (Math.abs(difference)>turnAmount){
 this.direction = wrapDirection(this.direction+turnAmount*Math.abs(difference)/
difference,this.directions);
 } else {
 // Once it is pointing to the left, remove the harvester and oil field and deploy a
harvester building
 game.remove(this.orders.to);
 this.orders.to.lifeCode="dead";
 game.remove(this);
 this.lifeCode="dead";
 game.add({type:"buildings", name:"harvester", x:this.orders.to.x,
y:this.orders.to.y, action:"deploy", team:this.team});
 }
 } else {
 var moving = this.moveTo(target);
 // Pathfinding couldn't find a path so stop
 if(!moving){
 this.orders = {type:"stand"};
 }
 }
 break;

http://www.red3d.com/cwr/steer/

Chapter 7 ■ Intelligent Unit Movement

191

We start by using the moveTo() method to move the harvester to the middle of the oil field. Once the harvester
reaches the oil field, we use the angleDiff() method and turn the harvester toward the left (direction 6). Finally, we
remove the harvester vehicle and oil field items from the game and add a harvester building at the oil field’s location
with the action set to deploy.

If we run our game, select the harvester vehicle, and then right-click an oil field, we should see the harvester
move to the oil field and deploy into a building, as shown in Figure 7-5.

The harvester moves to the oil field, turns into position, and then seems to expand into a harvester building. As
you can see, with the movement framework in place, handling different orders is very easy.

Before we wrap up unit movement, we will address one last thing. You may have noticed that the unit movement
especially for fast units such as the wraith seems a little choppy. We will try to smoothen this unit movement.

Smoother Unit Movement
Our game animation loop currently runs at a steady 10 frames per second. Even though our drawing loop runs faster
(typically 30 to 60 frames per second), it has no new information to draw during these extra loops, so effectively it too
draws at 10 frames per second. This results in the choppy-looking movement that we see.

One simple way to make the animation look much smoother is interpolating the vehicle movement between
animation frames. We can calculate the time since the last animation loop and use it to create an interpolation factor
that is used to position the units during intermediate drawing loops. This little adjustment will make the units seem to
move at a much higher frame rate, even though they are actually being moved only at 10 frames per second.

Figure 7-5.  Harvester vehicle deploying into a harvester building

Chapter 7 ■ Intelligent Unit Movement

192

We will start by modifying the game object’s animationLoop() method to save the last animation time and the
drawingLoop() method to calculate an interpolation factor based on the current drawing time and the last animation
time. The final version of animationLoop() and drawingLoop() will look like Listing 7-23.

Listing 7-23.  Calculating a Movement Interpolation Factor (game.js)

animationLoop:function(){
 // Process orders for any item that handles it
 for (var i = game.items.length - 1; i >= 0; i--){
 if(game.items[i].processOrders){
 game.items[i].processOrders();
 }
 };
 
 // Animate each of the elements within the game
 for (var i = game.items.length - 1; i >= 0; i--){
 game.items[i].animate();
 };
 
 // Sort game items into a sortedItems array based on their x,y coordinates
 game.sortedItems = $.extend([],game.items);
 game.sortedItems.sort(function(a,b){
 return b.y-a.y + ((b.y==a.y)?(a.x-b.x):0);
 });
 
 //Save the time that the last animation loop completed
 game.lastAnimationTime = (new Date()).getTime();
},
drawingLoop:function(){
 // Handle Panning the Map
 game.handlePanning();
  
 // Check the time since the game was animated and calculate a linear interpolation factor (-1 to 0)
 // since drawing will happen more often than animation
 game.lastDrawTime = (new Date()).getTime();
 if (game.lastAnimationTime){
 game.drawingInterpolationFactor = (game.lastDrawTime-game.lastAnimationTime)/game.
animationTimeout - 1;
 if (game.drawingInterpolationFactor>0){ // No point interpolating beyond the next
animation loop ...
 game.drawingInterpolationFactor = 0;
 }
 } else {
 game.drawingInterpolationFactor = -1;
 
 }
 

Chapter 7 ■ Intelligent Unit Movement

193

 // Since drawing the background map is a fairly large operation,
 // we only redraw the background if it changes (due to panning)
 if (game.refreshBackground){
 game.backgroundContext.drawImage(game.currentMapImage, game.offsetX, game.offsetY,game.
canvasWidth, game.canvasHeight, 0, 0, game.canvasWidth, game.canvasHeight);
 game.refreshBackground = false;
 }
 
 // Clear the foreground canvas
 game.foregroundContext.clearRect(0,0,game.canvasWidth,game.canvasHeight);
 
 // Start drawing the foreground elements
 for (var i = game.sortedItems.length - 1; i >= 0; i--){
 game.sortedItems[i].draw();
 };
 
 // Draw the mouse
 mouse.draw();
 
 // Call the drawing loop for the next frame using request animation frame
 if (game.running){
 requestAnimationFrame(game.drawingLoop);
 }
},

We save the current time into game.lastAnimationTime at the end of the animationLoop() method. We then
use this variable and the current time to calculate the game.drawingInterpolationFactor variable that is a number
between -1 and 0. A value of -1 indicates that we draw the unit at the previous location, while a value of 0 means that
we draw the unit at its present location. Any value between -1 and 0 means that we draw the unit at an intermediate
location between the two points. We cap the value at 0 to prevent any extrapolation from happening (i.e., drawing the
unit beyond the point that it has been animated).

Note■■   Using techniques such as extrapolation and client-side prediction to position units is much more common in
multiplayer first-person shooter games to compensate for lag because of high latency.

Now that we have calculated the interpolation factor, we will use it along with the unit lastMovementX and
lastMovementY values to position the element while drawing. First, we will modify the default draw() method for the
aircrafts object inside aircraft.js, as shown in Listing 7-24.

Listing 7-24.  Interpolating Movement While Drawing Aircraft (aircraft.js)

draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX +
this.lastMovementX*game.drawingInterpolationFactor*game.gridSize;
 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY-this.pixelShadowHeight +
this.lastMovementY*game.drawingInterpolationFactor*game.gridSize;
 this.drawingX = x;
 this.drawingY = y;
 if (this.selected){

Chapter 7 ■ Intelligent Unit Movement

194

 this.drawSelection();
 this.drawLifeBar();
 }
 var colorIndex = (this.team == "blue")?0:1;
 var colorOffset = colorIndex*this.pixelHeight;
 var shadowOffset = this.pixelHeight*2; // The aircraft shadow is on the second row of the sprite sheet
 
 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.
pixelWidth,colorOffset,this.pixelWidth,this.pixelHeight,x,y,this.pixelWidth,this.pixelHeight);
 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.
pixelWidth,shadowOffset,this.pixelWidth,this.pixelHeight,x,y+this.pixelShadowHeight,this.
pixelWidth,this.pixelHeight);
}

The only change that we made is adding the extrapolation-related term to the x and y coordinate calculations.
Next we will make the same change to the default draw() method for vehicles inside vehicles.js (see Listing 7-25).

Listing 7-25.  Interpolating Movement While Drawing Vehicles (vehicles.js)

draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX + this.lastMovementX*game.
drawingInterpolationFactor*game.gridSize;
 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY + this.lastMovementY*game.
drawingInterpolationFactor*game.gridSize;
 this.drawingX = x;
 this.drawingY = y;
 
 if (this.selected){
 this.drawSelection();
 this.drawLifeBar();
 }
 
 var colorIndex = (this.team == "blue")?0:1;
 var colorOffset = colorIndex*this.pixelHeight;
 
 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.pixelWidth,colorOffset,
 this.pixelWidth,this.pixelHeight,x,y,this.pixelWidth,this.pixelHeight);
}

If we run the game and move the units around, the movement should now be visibly smoother than before. With
this last change, we can now consider unit movement wrapped up.

Summary
In this chapter, we implemented intelligent unit movement for our game.

We started by developing a framework to give selected units commands and for the entities to then follow orders.
We implemented the move order for aircraft by moving them straight toward their destination and for vehicles by

using a combination of A* for pathfinding and repulsive forces for steering. We then implemented the deploy order for
harvesters using the movement code we developed.

Finally, we smoothened the unit movement by integrating an interpolation step within our drawing code.
In the next chapter, we will implement more of our game rules: creating and placing buildings, teleporting

vehicles and aircraft from the starport, and harvesting for money. So, let’s keep going.

